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The Cooper pairing problem, concluded

Go back to calculate the expansion coefficients for the ansatz wavefunction:

97 = W, now substituting the eigen-energy gives,
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difference from the Fermi surface.
Treating the sum in the numerator as just a number, which can be subsumed
into the normalization factor, we get for the full wavefunction,
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Note two things about this expression. First there is no preferred direction in

where we define £, = ¢, — Er, which is the energy

k-space, that is the solution wavefunction is isotropic in ? This isotropy of
the wavefunction is noted as "s-wave pairing" in the literature. Other orbital
symmetries are possible and observed, including "p-wave" and "d-wave" pairing
states. Second, the expansion coefficients decrease quickly with increasing dis-
tance from the Fermi surface, falling off like 1/k2. This justifies to some extent
the simplified treatment of the pairing potential VKU'

0.1 Binding Energy Systematics

The binding energy depends on the energy scale of the ion vibrations Aw. as
well as the strength of the pairing interaction V' and the density of states (DOS)
at the Fermi energy D(EF). Let’s examine these dependencies, assuming that
the superconducting transition temperature scales with the binding energy of
the Cooper pair, i.e. kgT, ~ 2hw.e2/P(ERV

It is found in the transition metals that T, scales very closely with the DOS
at the Fermi energy, D(Er). The Supplementary Material on the class web
site shows this dependence. The oscillatory D(E) variation (and T, variation)
upon going across the 4d transition metal alloys arises from the Fermi energy
moving through peaks and values of the DOS in the fairly rigid band structure.
We will study the dependence of T, on Aw, after the discussion of the pairing
interaction in the next lecture.



0.2 Estimating the Coherence Length

If we imagine that the Cooper pair is a minimum uncertainty wave packet,
we can make an order of magnitude estimate of its spatial extent. Using the
position momentum uncertainty relation AxAp ~ h, and estimating Ap ~
hwee ?/PERV - kpT,
vE vE
Ax ~ h[fF More correctly, BCS theory predicts this length scale is g = a khBT ,
where a = 0.18. Plugging in numbers for Al we find £y = 0.18x13.1um = 2.4um.
The accepted experimental value is about 1.6um. Al has a relatively high Fermi
velocity and low T, so it’s coherence length is rather large, putting it at the
extreme end in fact. Most materials have coherence lengths ranging from about
1 to 100 nm. In Ginzburg-Landau theory we will interpret the coherence length
as the characterstic length scale on which the superconducting order parameter
can vary.
Going back to the Cooper pair size discussion, we see now that in a typical
metal the pairs are highly overlapping. A Cooper pair of size 102 to 103 nm,
with atoms of size 107! nm, will cover (10%)? to (10%)3 or 10° to 10'? electrons!
Hence each Cooper pair overlaps with "billions and billions" of others, making
this very different from a Bosonic gas, such as *He. The strongly overlapping
nature of the pairs means that superconductivity is not simply a Bose-Einstein
condensation of weakly interacting (spin-singlet) Bosons, but a phase transition
of very different character.
Thinking ahead to the full BCS theory, we need to write down an ansatz wave-
function for ALL of the electrons in the metal. At this point it is clear that we
are NOT able to write the full N-particle superconducting state wavefunction as
U(1,2,--- ,N)=(1,2)9(3,4) - w(% -1, %) Something much more general
that respects the Fermionic nature of the electrons is required.

, we find the typical size of a Cooper pair is,




